
Software Certification and Software Certificate
Management Systems

(Position Paper)

Ewen Denney and Bernd Fischer

USRA/RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA
{edenney,fisch}@email.arc.nasa.gov

1 Introduction

Software certification demonstrates the reliability and safety of software systems in
such a way that it can be checked by an independent authority with minimal trust in
the techniques and tools used in the certification process itself. It builds on existing
software assurance, validation, and verification techniques but introduces the notion of
explicit software certificates, which contain all the information necessary for an inde-
pendent assessment of the demonstrated properties. A software certificate management
system (SCMS) provides a range of certification services. It maintains the links between
different system artifacts (e.g., design documents, engineering data sets, or programs)
and different varieties of certificates, checks the validity of certificates, provides access
to explicit audit trails, enables browsing of certification histories, and enforces system-
wide certification and release policies.

We believe that a customizable SCMS with support for automated re-certification
of diverse artifacts should become an essential part of any effective development pro-
cess. Its primary impact is to increase the reliability and safety of software systems by
providing automation support for their audit. A SCMS can at any time provide cur-
rent information about the certification status of each component in the system, check
whether certificates have been audited, compute which certificates remain valid after a
system modification, and automatically start an incremental re-certification.

We are particularly interested in the combination of software certification with au-
tomated code generation and formal verification methods. Here, our focus is on the
related questions of how code generators can support the certification process, and how
software certification can be used to demonstrate and increase the reliability of the code
generation process.

2 Challenges

Building reliable software is a challenging task in itself, but there are several challenges
specifically related to certification, e.g.,

– maintaining high reliability, especially when a combination of diverse development
techniques is used,



– minimizing certification efforts, especially for product families and interconnected
systems of systems,

– reducing certification and re-certification times,
– linking between artifacts and certificates, and
– providing useful information (e.g., estimates of certification efforts).

We claim that the solution to these challenges is an intelligent, automated, and highly
customizable software certificate management system integrated into the development
process.

3 Software Certification

Software certification comprises a wide range of formal, semi-formal, and informal
assurance techniques, including formal verification of compliance with explicit safety
policies, system simulation, testing, code reviews and human “sign offs”, and even ref-
erences to supporting literature. Consequently, the certificates can have different types,
and the certification process requires different mechanisms. A SCMS must be able to
support such different certificate types and certification mechanisms. In order to guar-
antee separation of concerns and thus achieve scalability, certification approaches need
to concentrate on individual risk factors one at a time. Consequently, a SCMS must be
able to combine different certificates for the same artifact to construct an overarching
certificate and, ultimately, to provide a higher degree of confidence.

Certificates A certificate contains all information necessary for an independent assess-
ment of the properties claimed for an artifact. Obviously, the exact nature of the cer-
tificates depends on the nature of the artifact, the property, and the claim. However, a
SCMS needs a unified view of certificates. At its most abstract, a certificate thus has
to represent the three entities involved in the certification process, (i) the artifact being
certified, (ii) the property being asserted, and (iii) the certification authority.

Certifiable Artifacts Certifiable artifacts include not only the conventional software
artifacts (e.g., product families, completed systems, individual components, or even
code fragments) but also supporting non-software artifacts: requirements documents,
system designs, component specifications, test plans, individual test cases, scientific
and engineering data sets, and others.

In particular, the supporting evidence for one certificate can be considered as the
artifact of another certificate. For example, if the correctness of a component is to be
certified using traditional black-box testing, the test harness and the test scripts are
supporting evidence for the certificate; at the same time, the test harness can itself be
certified, e.g., by a code review, and is thus the artifact of another certificate.

Certificate Hierarchies As indicated in the example above, the certificates for an ar-
tifact are not an unstructured collection but exhibit some hierarchical structure. This
structure is determined by two independent dimensions, (i) the system structure, and
(ii) the certificate types.

The internal structure of a system is reflected in the certificate hierarchy. If a system
is decomposed into a number of subsystems, and each subsystem is built from a number
of components, then a certificate for the system depends directly on the certificates of



the subsystems and indirectly on the certificates of all involved components. A SCMS
must be able to represent this structure, taking into account language-specific visibility
rules like module and subsystem boundaries that can limit the propagation of changes.

The second dimension is given by the certificates themselves, or more precisely,
by the certificate types. The validity of a certificate can also depend on certificates for
the supporting evidence (as described above), or even the authority, e.g., when a code
review can only be signed by a certified software engineer. This part of the certificate hi-
erarchy reflects the internal structure and procedures of the organization developing the
software. A SCMS can then use the certificate hierarchy for auditing and incremental
re-certification, similar to the way the Unix make-tool uses explicit dependencies and
rules for incremental re-compilation. The SCMS can determine which certificates need
to be inspected, recomputed, or revalidated after an artifact or a certificate has been (or
would be) modified.

Certifiable Properties and Certification Authorities Traditional V&V has only ad-
dressed a restricted range of formal properties. Realistically, however, software devel-
opment requires a wide range of notions of software reliability, safety, and validity,
each with an appropriate certification authority. This must all be supported by a cus-
tomizable SCMS. Examples include coding standards, test cases, statistical validity for
data sets, simulation on high-fidelity test beds, fault tree analysis (FTA), failure modes
and effects analysis (FMEA), stress tests, interoperability, usability, compatibility, and
feasibility studies, as well as formally specified logical safety properties.

Release Policies In the context of certification, a release refers to the transition of an
artifact into a new defined state: for example, launch, system integration test, alpha and
beta testing phases, spiral anchor-point milestones, or code inspection. A release policy
formally describes under which conditions an artifact is deemed to be in an adequately
certified state and can thus be released safely to another state. Different release policies
can be formulated to describe the different types of releases, and the corresponding
certification requirements.

4 Certification Services

Intuitively, a SCMS combines the functionalities of a database (e.g., storing and re-
trieving certificates) and a make-tool (e.g., incremental re-certification). Specifically, it
provides a variety of different services.

Certificate construction The main task of the SCMS is the construction of certifi-
cates. Given an artifact, a claimed property, and a certification authority, the SCMS will
attempt to construct the certificate, invoking automatic mechanisms and notifying indi-
viduals of pending tasks, as appropriate. It should estimate the time and effort that the
certification will take.

Editing and revoking Users can deem an individual certification authority to no longer
be valid (e.g., a bug is discovered in a test harness, or an employee’s badge has expired).
The SCMS should revoke all certificates which depend on this.

Certificate maintenance The SCMS will carry out intelligent re-certification when
a (customizably) appropriate change has taken place in the code or, more generally,



software artifacts to be certified. Existing (sub-) certificates should be reused where
possible, especially where product families are concerned.

Auditing Since the SCMS provides a complete certification history with full informa-
tion about all procedures followed, comprehensive audits can be carried out, applying
alternative tools and/or oversight to any elements. The audit itself can then be recorded
in the certification database.

Schema management Clearly, the SCMS must be generic. It must be customizable
to existing procedures. It can be thought of as having a client-server architecture. The
SCMS is the client and allows users to “plug and play” with arbitrary certificate servers.

5 Current Technology and Advances Required

In terms of computing infrastructure, the notions of certificate and certification are usu-
ally used in the context of security mechanisms for computer systems, in particular for
computer networks and network-based services.

A SCMS can build on an existing secure infrastructure, e.g., PKI, for distribution,
authentication, tamper-proof access control, persistence, and other desirable properties.
However, there are a number of differences from existing technology where advances
are required:

– linking to (and deep into) software artifacts,
– the wide diversity of forms of certification, both formal and informal, and
– the need for customizability and extensibility.

The SCMS should be an integral part of a development tool suite and use the same
underlying datastructures, e.g., development graphs [1]. It can be linked to other tools,
e.g., code generators and software reliability estimators. In particular, software certifi-
cation can be combined with automated design documentation, so that the SCMS can
provide an integrated exploration tool for code, certificates, and documentation, similar
to safety cases [5] but more specific to the code level. Likewise, model-based software
development tools should allow the definition of arbitrary domain-specific certificate
types with respect to explicit domain models.

6 Certification of Automatically Generated Code

We are currently investigating some of these ideas in the context of an ongoing project
on automated code generation. We have developed an approach to safety verification
[3] in which the code generator is extended to enable Hoare-style safety proofs for each
individual generated program. The key idea is to generate logical annotations along with
the code, so that the proofs can be automated. These proofs ensure that the generated
code does not violate certain conditions during its execution. However, it has gradually
become clear that since this process produces a large number of auxiliary artifacts, and
involves many components of varying complexity and reliability, that additional tool
support should enable users to browse the entire set of safety artifacts.



In [4], we describe a rudimentary certification browser, which provides linking
between the generated program, its verification conditions, the generated axioms, the
proofs, and the proof checks. This is a first step towards an interactive tool which would,
for example, allow designated users to sign off on otherwise unverified lines of code.
This would be a prototype SCMS for code generation. Similar ideas have been investi-
gated by the Programatica project [6], though not in connection with code generation.

In recent work we have developed an approach to inferring annotations for code
produced by third-party code generators. This suggests a means of certifying the code
produced by COTS code generators, and circumvents the difficulties that stem from
treating these tools as black boxes.

7 Conclusions

Incremental certification and re-certification of code as it is developed and modified is
a prerequisite for applying modern, evolutionary development processes, which are es-
pecially relevant for NASA. For example, the Columbia Accident Investigation Board
(CAIB) report [2] concluded there is “the need for improved and uniform statistical
sampling, audit, and certification processes”. Also, re-certification time has been a lim-
iting factor in making changes to Space Shuttle code close to launch time. This is likely
to be an even bigger problem with the rapid turnaround required in developing NASA’s
replacement for the Space Shuttle, the Crew Exploration Vehicle (CEV). Hence, in-
telligent development processes are needed which place certification at the center of
development. If certification tools provide useful information, such as estimated time
and effort, they are more likely to be adopted. The ultimate impact of such a tool will
be reduced effort and increased reliability.

References

[1] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The Development Graph Manager
MAYA (System Description). In Proc. 9th International Conference on Algebraic Method-
ology And Software Technology (AMAST’02). LNCS 2422, pp. 495–501, 2002.

[2] Columbia Accident Investigation Board Report, Volume 1. http://caib.nasa.gov/.
2003.

[3] E. Denney and B. Fischer. Formal Safety Certification of Aerospace Software. In Proc.
Infotech@Aerospace. AIAA, 2005. Invited talk.

[4] E. Denney and B. Fischer. A Program Certification Assistant Based on Fully Automated
Theorem Provers. In Proc. International Workshop on User Interfaces for Theorem Provers,
(UITP’05), 2005.

[5] T. Kelly and R. Weaver. The Goal Structuring Notation – a Safety Argument Notation. In
Proc. DSN Workshop on Assurance Cases: Best Practices, Possible Obstacles, and Future
Opportunities, 2004.

[6] Programatica Project. www.cse.ogi.edu/PacSoft/projects/programatica.
2004.


